Role of lattice defects in catalytic activities of graphene clusters for fuel cells.

نویسندگان

  • Lipeng Zhang
  • Quan Xu
  • Jianbing Niu
  • Zhenhai Xia
چکیده

Defects are common but important in graphene, which could significantly tailor the electronic structures and physical and chemical properties. In this study, the density functional theory (DFT) method was applied to study the electronic structure and catalytic properties of graphene clusters containing various point and line defects. The electron transfer processes in oxygen reduction reaction (ORR) on perfect and defective graphene clusters in fuel cells was simulated, and the free energy and reaction energy barrier of the elementary reactions were calculated to determine the reaction pathways. It was found that the graphene cluster with the point defect having pentagon rings at the zigzag edge, or line defects (grain boundaries) consisting of pentagon-pentagon-octagon or pentagon-heptagon chains also at the edges, shows the electrocatalytic capability for ORR. Four-electron and two-electron transfer processes could occur simultaneously on graphene clusters with certain types of defects. The energy barriers of the reactions are comparable to that of platinum(111). The catalytic active sites were determined on the defective graphene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, sta...

متن کامل

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

Catalytic Mechanisms of Sulfur-Doped Graphene as Efficient Oxygen Reduction Reaction Catalysts for Fuel Cells

Density functional theory (DFT) was applied to study sulfur-doped graphene clusters as oxygen reduction reaction (ORR) cathode catalysts for fuel cells. Several sulfurdoped graphene clusters with/without Stone−Wales defects were investigated and their electronic structures, reaction free energy, transition states, and energy barriers were calculated to predict their catalytic properties. The re...

متن کامل

Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells.

The development of fuel cells as clean-energy technologies is largely limited by the prohibitive cost of the noble-metal catalysts needed for catalyzing the oxygen reduction reaction (ORR) in fuel cells. A fundamental understanding of catalyst design principle that links material structures to the catalytic activity can accelerate the search for highly active and abundant nonmetal catalysts to ...

متن کامل

Josephson Current For a Graphene Nanoribbon Using a Lattice Model

A tight binding approach based on the Bogoliubov-de Gennes approach has been used to calculate the DC Josephson current for a lattice model for S-GNR-S junctions , for short junctions with respect to superconducting coherence length. We calculate the phase, length, width and chemical potential dependence at the Josephson junction and discuss the similarities and differences with regard to the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 26  شماره 

صفحات  -

تاریخ انتشار 2015